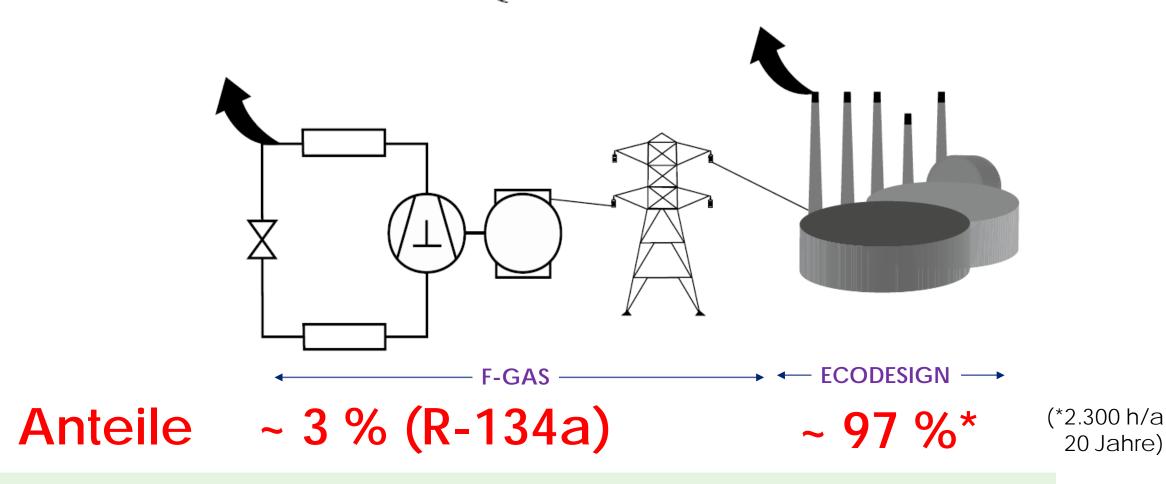


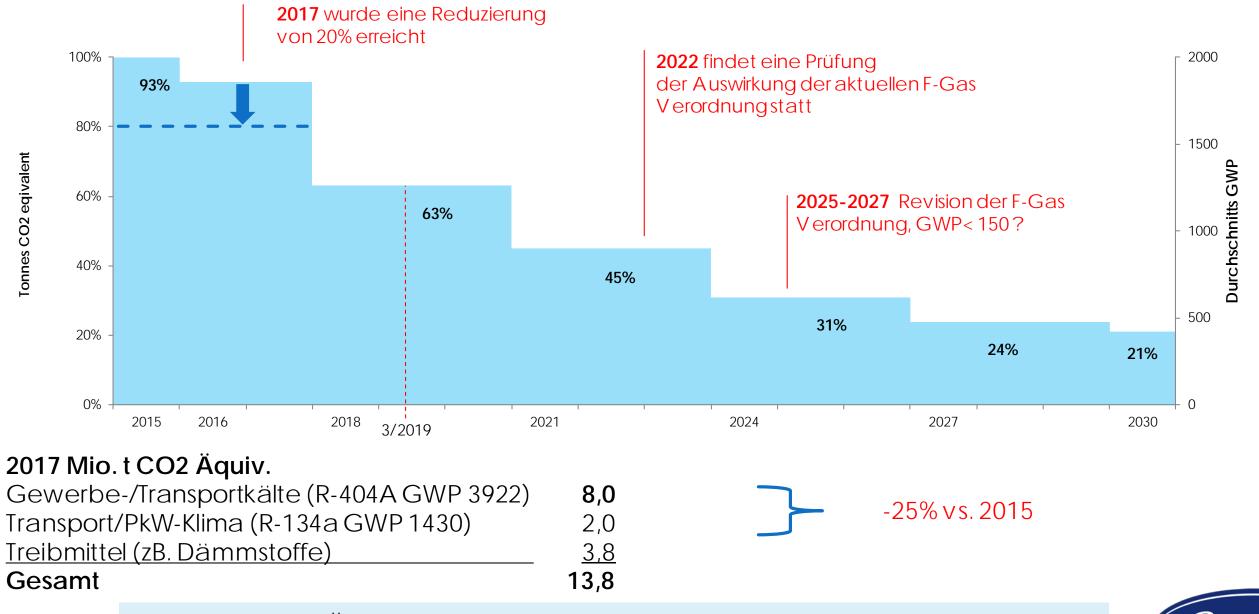
Kältemittel (F-Gase) EcoDesign Effizienzsteigerung

Christian Henkel Dipl.-Ing. (FH) Vertriebsleiter Region Süd


Die Herausforderung

TRAIBHAUSPOTENTIAL SENKEN

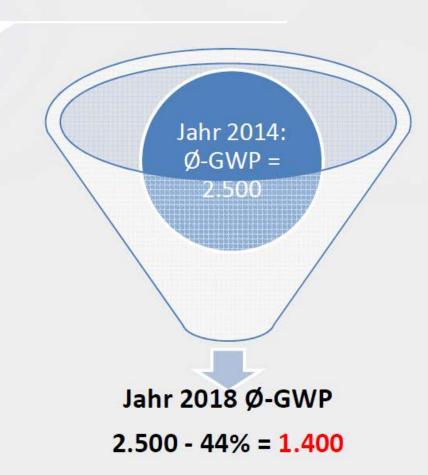
TEWI


TEWI = TOTAL EQUIVILENT WARMING IMPACT

Ein Kältemittel mit der <u>Hälfte des GWP</u> und einer <u>EFFIZIENZVERSCHLECHTERUNG</u> von <u>nur 2 %</u> würde den <u>GLEICHEN TEWI</u> bewirken

F-Gase Statistik 2017

8 Mio. t CO2 Äquivalente auf Kältemittel für stationäre Kälte-/Klimaanlagen => 0,9 % der gesamten Treibhausgasemisionen (900 Mio t.) in Deutschland!

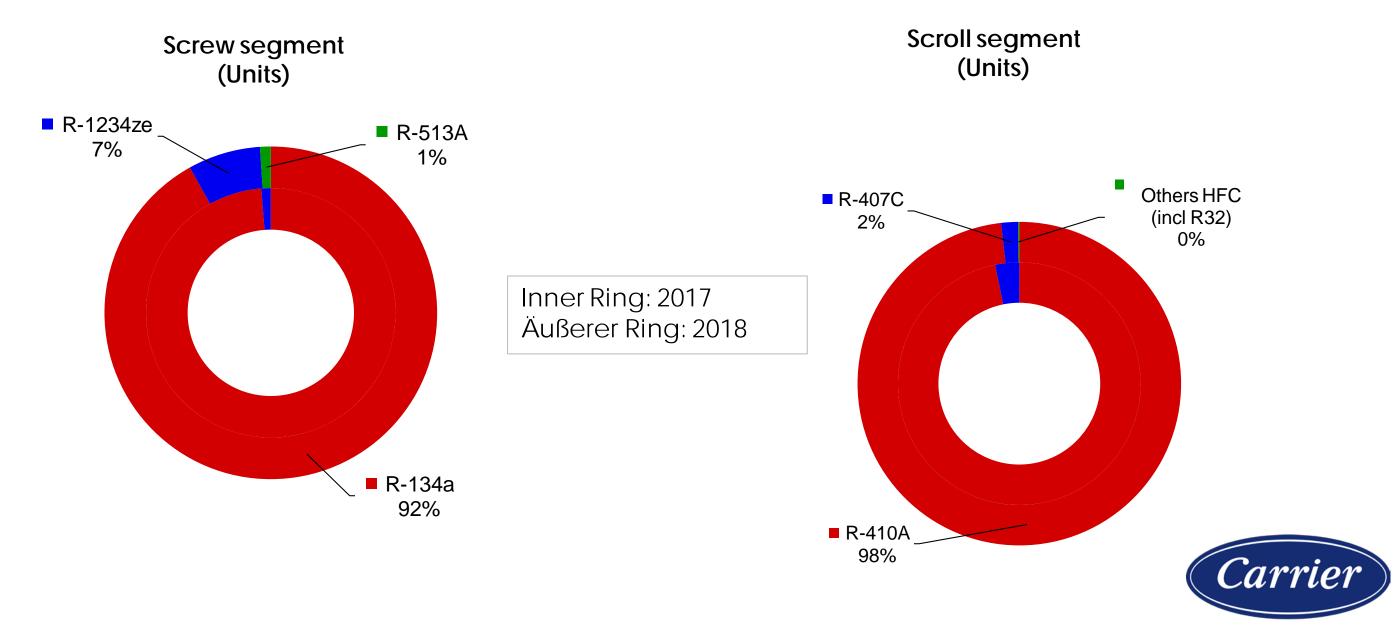


Kältemittel-Markt

GERLING AR Becker

Durchschnitts-GWP

		2014	
Kältemittel	Ma-%	GWP-Anteil	GWP-%
R-134a	38%	544	22%
R-404A	34%	1.319	53%
R-407C	12%	211	8%
R-410A	8%	176	7%
R-422D	5%	133	5%
R-507	3%	123	5%
Summe	100%	2.507	100%

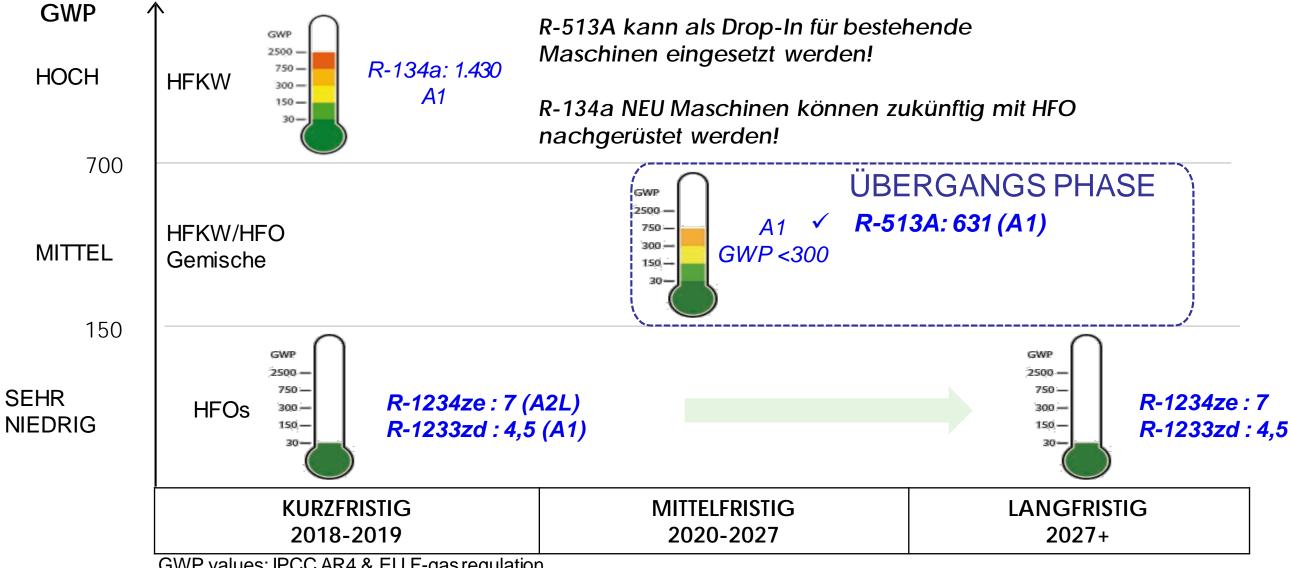

Mögliche abschwächende Einflüsse:

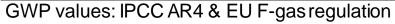
- AutomotiveVerbot von GWP > 150 seit 2017
- Es wird verstärkt KM recycelt

WP

2018 EUROVENT CHILLERS

EUROPA – KÄLTEMITTEL MIX


Branchen-Märchen vs Wissen


- R-134a wird verboten!
- ▶ JA für Pkw und Gewerbekälte (Thekenkühlung, da sehr hohe Leckraten).
- ► NEIN für R-134a-CO2-Kaskaden (Supermarkt).
- ▶ NEIN für Kaltwassersätze und Wärmepumpen, da technisch dauerhaft dicht! D.h. momentan kein Ausstieg bis 2030. R-134a und R-410A, mehr als 90 % aller Raumklimasysteme und Wasserkühlsätze - F-Gase-Verordnung keine Beschränkungen

ABER Verknappung und somit Preisanstieg! seit 2014...Q2/18 R-410A/R-407C ca. 1.000 %, aber seit Q3/18 leichter Preisrückgang. seit 2014...Q2/18 R-134a ca. 600 %, aber seit Q3/18 leichter Preisrückgang.* *Quelle: Öko-Recherche (2019)

R-134a ALTERNATIVEN

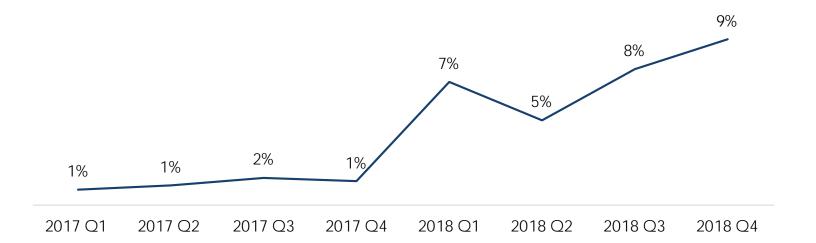
R-513A - Fakten

- nicht brennbares Gemisch (Klasse A1) aus 43 % R-134a und 55 % R-1234yf
- AMEV bewertet R-134a und R-513A für nicht zukunftssicher
- Ca. 3% geringerer Effizienz zu R-134a => CO2 Bilanz/TEWI schlechter, höhere Betriebskosten
- GWP von 631 => Übergangs Kältemittel von der F-Gase Verordnung betroffen.
 Eine Verfügbarkeit über das Jahr 2027 ist nicht garantiert!
- Für langfristige und nachhaltige Lösungen sind nur Low-GWP (HFO).
- Die Innenaufstellung von HFO Maschinen mit A2L Kältemittel die als "Technisch Dauerhaft Dicht" eingestuft werden, ist nicht wesentlich aufwendiger als bei A1 Kältemittel.
- Bei Defekten in der Zukunft sind heutige R-134a Maschinen auf R-513A umrüstbar

R-513A ist aus Sicht der Umwelt und Betriebskosten ein schlechtes Kältemittel.

R-513A vs R-1234ze

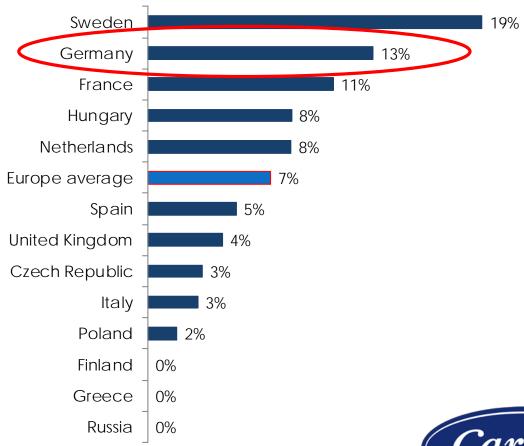
	R-1234ze	R-513A Gemisch
Zusammensetzung	R-1234ze	R-134a + R-1234yf
GWP (AR4 / AR5)	6 / <1	631 / 573
Effizienz zu R-134a / TEWI	Gleich oder höher	ca. 3% schlechter
Phase Down / Zukunftsfähig	Nicht betroffen / JA	NEIN
Wiederkehrende Dichtigkeitsprüfung	nicht betroffen	JA
Zukünftige KM Preis Entwicklung	Preis fallend	Preis steigend
Wartung & Recycling	Einfache Basis Reinigung	Aufw. Wiederaufbereitung
LEED Zertifizierung	Zusatzpunkte	Keine
BAFA Förderung	Nein	Nein
Abmessungen/Gewicht zu R-134a	Größer	gleich
Preis	Höher	gleich



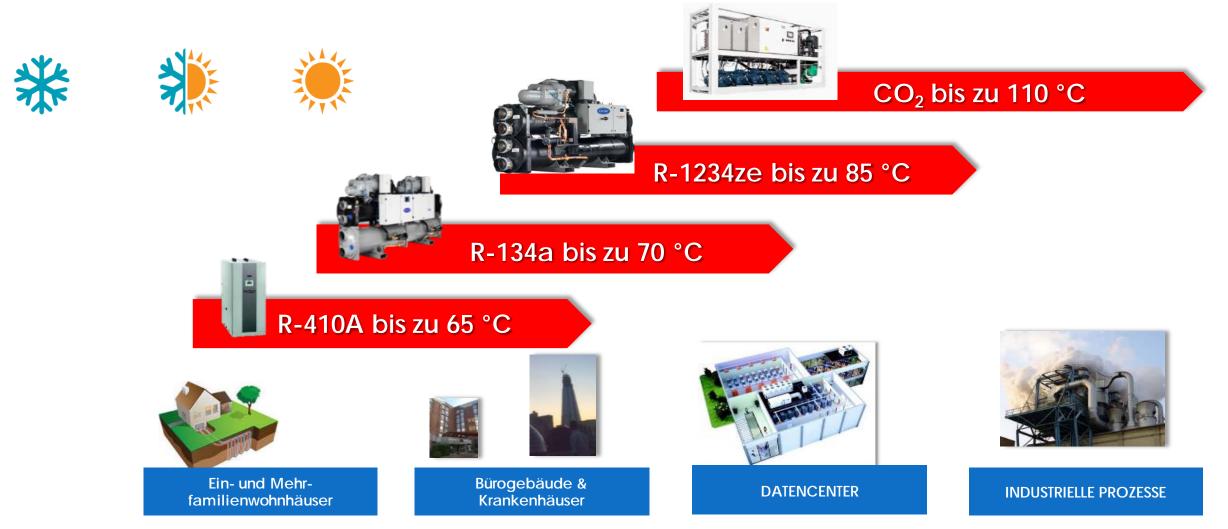
2018 EUROVENT CHILLERS

EUROPA – HFO ANTEIL SCREW

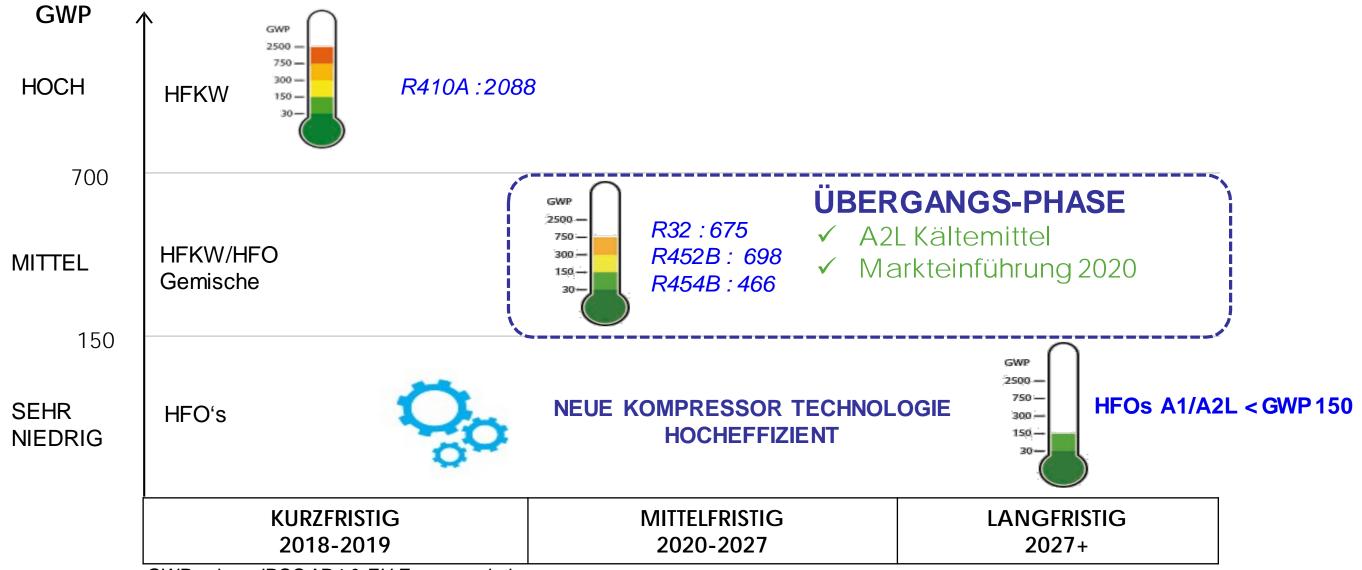
Large Europe


——Screw HFO penetration per quarter (% of units within screw)

Source: Eurovent Quarterly statistics YTD Dec 2017 & YTD Dec 2018 (12 participants) Internal valuation by UTC Mkt Intelligence

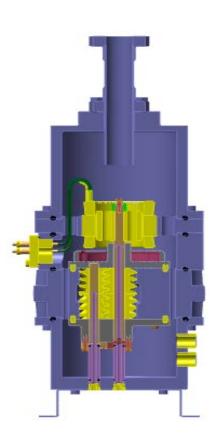

HVAC Europe 13 countries

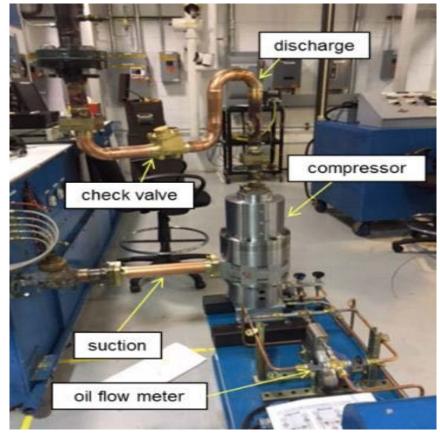
Per country (% of screw segment in units)


Portfolio Wärmepumpen

Das Portfolio von Carrier ermöglicht den Einsatz in fast allen Bereichen

R-410A ALTERNATIVEN



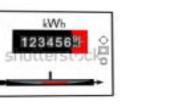

GWP values: IPCC AR4 & EU F-gas regulation

ZUKUNFT – Carrier-Mini Screw Compressor (HSSC)

- ➤ High Speed Screw Compressor* für LOW GWP A1 Kältemittel (DR-12, HFO)
- Permanent Magnet Motor, drehzahlgeregelt
- > Schrauben Kompressoren sind für hohe Volumenströme sehr gut geeignet
- Prototypen Kompressor leistet 17,6 kW bei 11.000 U/min und 4,4 kW bei 2.500 U/min
- ➤ Kompressorgehäuse so groß wie die jetzigen R-410A Scroll-Kompressoren.

* UTC Climate Controls & Security, Syracuse, New York, USA

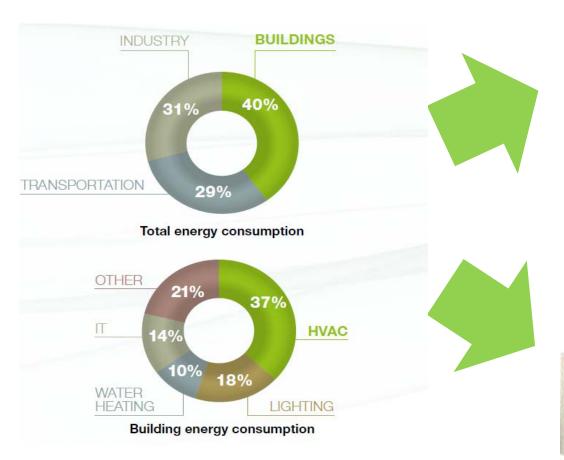
EcoDesign & Kennzeichnung


ErP (=ENERGY RELATED PRODUCTS)

ECODESIGN

KENNZEICHNUNG

<12 kW AC <70 kW WP



EFFIZIENZERFÜLLUNG IST FÜR DIE CE-KENNZEICHNUNG PFLICHT!

Umweltanforderungen

Gebäude sind heute die größten Energieverbraucher.

GEBÄUDE EPBD

Energy Performance Building Directive

Nationale Verordnungen: ENEV...

Geräte/Maschinen Richtlinien

- => Ecodesign
- => Energie Kennzeichnung

FOKUS LIEGT AUF SENKUNG DES GEBÄUDEENERGIE VERBRAUCHS

Komfort vs Prozess Kühlung

KOMFORT

-Einhaltung der Raumtemperatur für den thermischen Komfort der Menschen
- Lastkurve folgt der Aussenluft Temp. überwiegend Teillast
- Beispiel Anwendung:
- Fan coils 12/7 °C
- Lüftungsgeräte 12/7 °C
- Kühldecken 23/18 °C

PROZESS

- Kühlsysteme....nicht für den Komfort der Menschen
- ► Lastkurve Prozess abhängig (Volllast)
- Beispiel Anwednung:
- Rechenzentren
- Industrieprozesse
- Lebensmittelkühlung

Ecodesign Anforderung hängt von der Nutzung ab!

NEUE Richtlinie 2016/2281

ANFORDERUNG AN FLÜSSIGKEITSKÜHLER

	Prozess	Komfortkühlung		
Verordnung	N° 2015/1095 (ENTR Lot 1)	N°2016/2281 (ENER Lot 21)		
	Mittel Temp. Prozess Flüssigkeitskühler (Sole)	Hohe Temp. Prozess Flüssigkeitskühler	Komfort Flüssigkeitskühler	
Wasser Vorlauftemp.	Sole ≤ -8 °C	2 °C > LWT < 12 °C	> 2 °C	
Ecodesign Anforderungen	SEPR _{-2/-8} °C	SEPR _{12/7°C}	 ns Kühlen (Primärenrgie) SEER_{12/7 °C} (End Energie) SEER_{23/18 °C} (End Energie) 	

SEER (= Komfort-Kühlung)

Die neue Einheit für Komfort-Anwendung

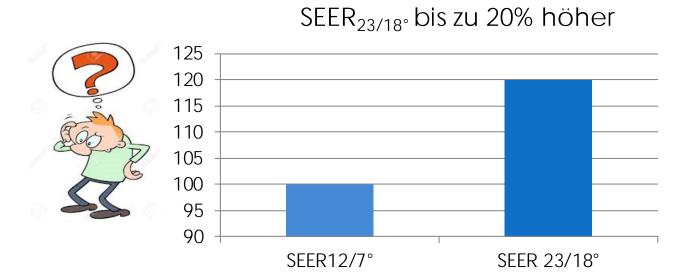
- SEER = Seasonal Energy Efficiency Ratio
- SEER = η_s cool (Primärenergie)
- Berechnung basierend auf:
- Kühl Saison > 17 °C AU Temp. mit 0...100 % Lastzunahme
- SEER_{12/7°C} für Fan coils/AHUs
- SEER_{23/18 °C} für Kühldecken/-Boden

73 % der **Zeit** => Last unter **50** %!

TECHNOLOGIEN: INVERTER ODER MEHRFACH "FIXED SPEED" KOMPRESSOREN DREHZAHLGEREGLTE PUMPEN

Mindest Effizienz Anforderung

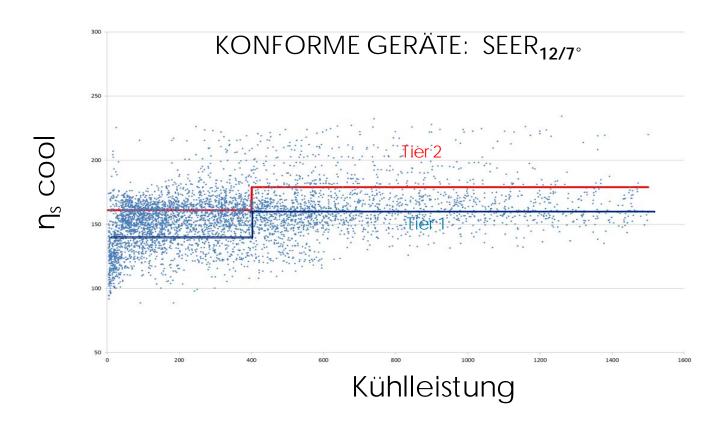
KOMFORT ANWENDUNG


KOMFORT-FLÜSSIG- AI		01/2018	Α	b 01/2021
KEITS-KÜHLER	ŋ _s Kühlen %	SEER 12/7 °C oder 23/18 °C	ŋ _s Kühlen %	SEER 12/7 °C oder 23/18 °C
Luftgekühlt < 400 kW	149	3,80	161	4,10
Luftgekühlt 400 bis 2000 kW	161	4,10	179	4,55
Wassergekühlt < 400 kW	196	4,98	200	5,08
Wassergekühlt 400 bis 1500 kW	227	5,75	252	6,38
Wassergekühlt 1500 bis 2000 kW	245	6,20	272	6,88

SEER – Zwei Bewertungen

Zwei unterschiedliche SEER Berechnungen aber nur eine Mindestanforderung!

- 1. SEER_{12/7°C} für Fan coil/AHU
- 2. SEER_{23/18 °C} für Kühldecken


Lücke in der Bewertung => Risiko eines falschen Vergleichs

BEI Carrier ERFÜLLEN ALLE PRODUKTE (>15 kW) DIE MINDESTEFFIZIENZ FÜR DIE KOMFORT KÜHLUNG BEI 12/7 °C

Auswirkungen auf den Markt

NUR 24 % der Geräte (2017) wären in 2021 konform!

Quelle: Eurovent Datenbank


DIE MEISTEN Carrier-FLÜSSIGKEITSKÜHLER ERREICHEN SCHON HEUTE DIE ERHÖHTE MINDESTEFFIZIENZ ANFORDERUNG IM JAHR 2021

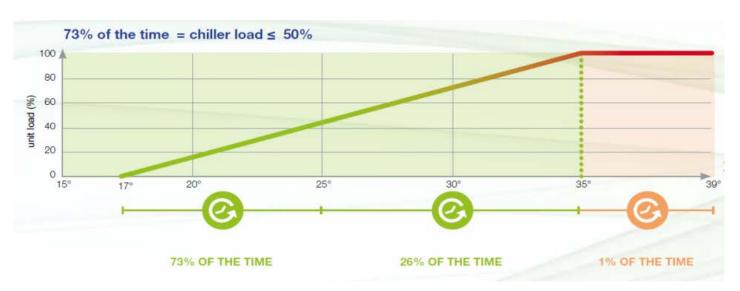
SEPR (= Prozess Kühlung)

Die neue Einheit für die Prozessanwendung

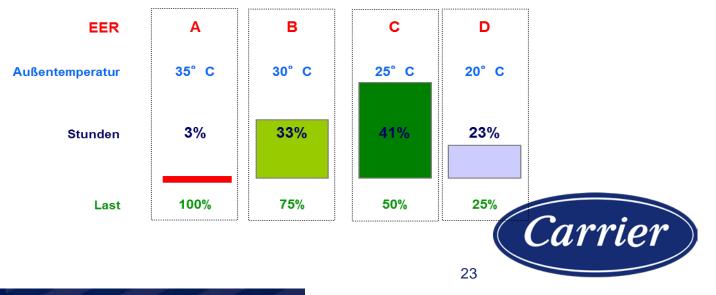
- **SEPR**
- = Seasonal Energy Performance Ratio
- Berechnung: Ganzjahresbetrieb mit 80 %...100 % Last
- SEPR_{-2/-8°} für negative WV Temp (Sole)
- SEPR_{12/7°} für positive WV Temp.

75 % der Zeit = Betrieb unter 17 °C! (SEER hat 0 Stunden < 17 °C)

Haupt Treiber: Effizienz bei hoher Last & niedrigen AU-Temp


Technologie: Mehrfach "Fixed Speed" Kompressoren

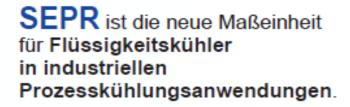
SEER vs ESEER


ECODESIGN

- Mindest Effizienzanforderung für Hersteller
- Erfüllung der ECO Design ist in der EU verpflichtend => CE Kennzeichen
- SEER/SEPR ist eine JAZ in kWh/kWh
 Energieverbrauch im <u>Stand-By/Kühlbereitschaft</u>
- Zwei Lastprofile Komfort/Prozess

EUROVENT ALT: ESEER NEU: EER, SEER, SEPR, SCOP

- Keine Mindesteffizienzanforderung
- Teilnahme an EUROVENT ist freiwillig
- ESEER ist ein Teillastwirkungsgrad in kW/kW
- Nur ein Lastprofil
- Eurovent Effizienzklassen A, B, C, D sind nicht mehr maßgeblich.



SEER, SEPR & SCOP

WAS IST ZU BEACHTEN?

SEER ist die neue Maßeinheit für Flüssigkeitskühler in Komfortkühlungsanwendungen.

SCOP ist die neue Maßeinheit für Raumheizungsanwendungen.

Effizienz-Werte RICHTIG beurteilen! - Volllast

Bruttoleistungen,

EN14511-3; 2013 berücksichtigen **NICHT** die Korrektur der von der Wasserpumpe erzeugten proportionellen Heizleistung und Leistungsaufnahme zur Überwindung des internen **Druckverlusts im Wärmetauscher**.

Nettoleistungen,

die nach Eurovent zertifizierten Leistungen entsprechend der EN14511-3; 21013 inkl. Berücksichtigung des Druckverlusts im Wärmetauscher

•Bedingungen im Kühlbetrieb:

Verdampferseite: 12/7 °C; Verflüssigerseite: 30/35 °C;

Verschmutzungsfaktor: 0 m²K/W

EER brutto (Energy Efficiency Ratio)

ist das Verhältnis von Brutto-Kälteleistung und Leistungsaufnahme und bei Volllast OHNE Berücksichtigung des Druckverlusts im Wärmetauscher.

EER netto (Energy Efficiency Ratio)

ist das Verhältnis von Netto-Kälteleistung und Leistungsaufnahme und bei Volllast inkl. Berücksichtigung des Druckverlusts im Wärmetauscher.

COP (Coefficient of Performance)

Beschreibt das Verhältnis zwischen Leistungsaufnahme und Heizleistung bei Volllast inkl. Berücksichtigung des Druckverlusts im Wärmetauscher.

Effizienz-Werte RICHTIG beurteilen! - Teillast

19PV 720 mit 717 kW Kälteleistung

bei 12/7 °C und

Verflüssiger 30/35 °C

EN14511-3:2013

EN14825:2013,

Ökodesign-Verordnung (EU) Nr. 2016/2281

Unterschied zwischen EER brutto und netto 3,1 %

Unterschied zwischen ESEER brutto und netto 13,6 %

Effizienz-Abstufung

ALLE Eurovent Class EER "A" 19PV 30XWV 30XW (P)

Sehr gute Effizienz in Teil- und Vollast

EER 5...5,5 ESEER 8...8,7 SEER 12/7 °C 9,1...9,8

Sehr leiser Betrieb

Beste Effizienz bei abgesenkten Rückkühltemperturen

Gute Effizienz in Teil - und Vollast

EER 4,9...5,5 ESEER 6,9...8 SEER 12/7°C 7,3...8,4

stabiler Betrieb in allen Betriebspunkten

Günstige Lösung

EER5,2...5,9ESEER5,6...6,7SEER 12/7 °C5,6...7,3

Hochtemperatur WP bis 63 °C

Beste Effizienz in Volllast

30XW 1154A-734 STANDARD

R-134a-Doppelrotorschraube OHNE FU

		Kühlturm 12/7 27/32	Katalog 12/7 30/35	Trocken-RKW 12/7 40/45 EG
Kälteleistung	kW	1.153	1.145	1.028
	%	101	100	90
Leistungsaufnahme	\mathbf{kW}_{input}	205	215	295
	%	95	100	137
EER 100 % netto		5,62	5,32	3,48
SEER 12/7 °C		6,45		

SEPR 12/7 °C Kühlturm vs trocken (100 %)

Kühlturm vs trocken (100 %) 12 % mehr Kälteleistung und

nicht conform

69 % Leistungsaufnahme

30XW-P 1162A-734 PREMIUM

R-134a-Doppelrotorschraube OHNE FU

		Kühlturm	Katalog	Trocken-RKW
		12/7 27/32	12/7 30/35	12/7 40/45 EG
Kälteleistung	kW	1.169	1.161	1.052
	%	101	100	91
Leistungsaufnahme	\mathbf{kW}_{input}	188	200	270
	%	94	100	135
EER 100 % netto		6,22	5,8	3,89
SEER 12/7 °C		7,19		
SEPR 12/7 °C		8,00		
	_			

Kühlturm vs trocken (100 %) 11 % mehr Kälteleistung und 69 % Leistungsaufnahme

30XW-V 1150A-734 VFD

R-134a-Doppelrotorschraube mit FU

		Kühlturm 12/7 27/32	Katalog 12/7 30/35	Trocken-RKW 12/7 40/45 EG
Kälteleistung	kW	1.169	1.143	996
	%	102	100	87
Leistungsaufnahme	\mathbf{kW}_{input}	198	209	274
	%	95	100	131
EER 100 % netto		5,89	5,46	3,64

8,32

8,07

Kühlturm vs trocken (100 %) 17 % mehr Kälteleistung und

SEER 12/7 °C

SEPR 12/7 °C

17 % mehr Kälteleistung und 72 % Leistungsaufnahme

19PV 1180-734

R-134a öffreier VFD-Turbo

SEPR 12/7 °C

		Kühlturm	Katalog	Trocken-RKW
		12/7 27/32	12/7 30/35	12/7 40/45 EG
Kälteleistung	kW	1.172	1.171	1.058
	%	100	100	90
Leistungsaufnahme	\mathbf{kW}_{input}	210	228	298
	%	92	100	131
EER 100 % netto		5,79	5,33	3,64
SFFR 12/7 °C		9 51	•	•

9,46

Kühlturm vs trocken (100 %) 11 % mehr Kälteleistung und 70 % Leistungsaufnahme

Kühlturm vs Trocken-RKW

Kühlturm Trocken-RKW 12/7 °C 27/32 °C 12/7 °C 40/45 °C EG 34 %

Kühlturm vs trocken (100 %) 11...17 % mehr Kälteleistung und 69...72 % Leistungsaufnahme

Alle verglichenen Maschinen sind Eurovent-Class EER "A", d.h. die Bewertung nach Eurovent-Class ist NICHT aussagekräftig!

Absenkung der Kühlwassertemperatur

19PV 1180-734

R-134a öffreier VFD-Turbo

		100 %	75 %	50%	25 %
Kühlturm 12/7°C 27/32 °C (Vo	lumenstrom l	constant)			
Kälteleistung	kW	1.172	879	586	293
Leistungsaufnahme	kW input	210	135	89,4	44,5
EER netto	p	5,57	6,49	6,56	6,58
Kühlturm 7°C, 55,9 l/s; 20 °C,	65,9 l/s (Volu	menstrom konst	tant)		
Kälteleistung	kW	1.118	839	559	280
Leistungsaufnahme	\mathbf{kW}_{input}	149	98	62,3	33,7
EER netto		7,51	8,56	8,98	8,29
Effizienz-Steigerung:		35 %	32 %	37 %	26 %

Anhebung der Kaltwassertemperatur

19PV 1180-734

R-134a öffreier VFD-Turbo

	100 %	75 %	50%	25 %
olumenstrom	konstant)			
kW	1.172	879	586	293
\mathbf{kW}_{input}	210	135	89,4	44,5
	5,57	6,49	6,56	6,58
Volumenstro	m konstant)	, , , , , , , , , , , , , , , , , , ,	·	·
kW	1.266	950	633	317
\mathbf{kW}_{input}	206	131	85	44,1
	6,15	7,22	7,45	7,17
	10 %	11 %	14 %	9 %
	kW kWinput Volumenstro kW kWinput	kW 1.172 kWinput 210 5,57 Volumenstrom konstant) kW 1.266 kWinput 206 6,15	blumenstrom konstant) kW 1.172 879 kWinput 210 135 5,57 6,49 Volumenstrom konstant) kW 1.266 950 kWinput 206 131 6,15 7,22	Image: Exercise of the content of t

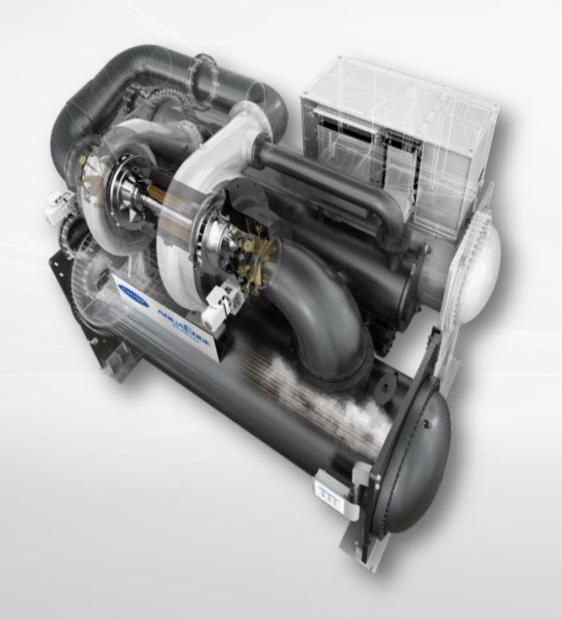
Kühlwasser-SPREIZUNG/-MENGE (konst.)

19PV 1180-734

R-134a öffreier VFD-Turbo

Kühlturm 15/10 °C V=konst., 27/32 °C – 5 K (Volumenstrom konstant)

Kälteleistung kW	1.266	950	633
------------------	-------	-----	-----


Kühlturm 15/10 °C V=konst, 27/37 °C – 10 K (Volumenstrom konstant)

Kälteleistung	kW	1.258	944	629
---------------	----	-------	-----	-----

19DV 2-stufiger, ölfreier VFD-Turbo

Volllast-EER 7,0

IPLV-Wert 11,8

Schneller Neustart nach 30 s

10 % Teillast

Oberwellenströme ≤ 5 %

Kälteleistung 2...2,7 MW

ab 2019 1,3...3,5 MW

Stickstoffhaltiger Spezialstahl

Keramik-Kugelelement

Käfig

- Keine Gefahr von Ölleckagen
- Keine Öl-bezogene Wartung
- Kühlung und Schmierung in einem mit flüssigem Kältmittel
- Einfache Isolierungsmethode gegen Ströme durch Oberwellen

Bewährter sicherer Betrieb Test >150.000 Stunden – 17 Jahre Volllast

2-stufiger Verdichter

R-1233zd(E)

Kältemittel mit niedrigemTreibhauspotenzial

- Niederdruck-Kältemittel
- Treibhauspotenzial (GWP) ~1
- 5 % höhere Effizienz als ein R-134a-System
- Klasse A1: Niedrige Toxizität, NICHT brennbar, NICHT explosiv
- (CCI-Artikel vom 25.08.2017)

Trotz ODP von 0,00034 in der F-Gase-Verordnung und EN 378 zugelassen.

Innovative technologische Vorzüge

Kältemittel schmierung

Fallfilm mit R-1233zd(E) Niedrige Kühlwassereintritts temperatur

ssereintritts operatur Carrier

Geringer GWP

* Kühlwassereintrittstemperatur, mit Option

Keramiklager Fallfilmverdampfer Intelligente Regelüngen

R1233zd - ODP ~0

DIN EN 378-1:2017-03 EN 378-1:2016 (D)

Tabelle E.1 (fortgesetzt)

Kältemittel- nummer	Chemische Bezeichnung ^b	Chemische Formel	Sicher- heits- klasse	Fluid- gruppe PED ^m	Prak- tischer Grenz- wert ^d (kg/m ³)	ATEL/ODL ^g (kg/m ³)	LFL ^h (kg/m ³)	Dampf- dichte 25°C, 101,3 kPa ^a (kg/m ³)	Molare Masse ^a	Normaler Siede- punkt ^a (°C)	ODP a e	GWP ^l (100 y ITH)	GWP a f (AR5) (100 y ITH)
(1233zd(E)	trans-1- Chlor-3,3,3- trifluor- prop-1-en	СF ₃ СН=СНСІ	A1	2	0,086	0,086	NF	5,34	130,5	18,1	~0	4,5	1
1234yf	2,3,3,3- Tetrafluor- prop-1-en	CF ₃ CF=CH ₂	A2L	1	0,058	0,47 ^j	0,289	4 ,66	114,0	- 26	0	4	< 1
1234ze(E)	trans-1,3,3,3- Tetrafluor- prop-1-en	CF ₃ CF=CHF	A2L	2 ⁿ	0,061	0,28	0,303	4,66	114,0	- 19	0	7	<1
1270	Propen (Propylen)	СН ₃ СН=СН ₂	А3	1	0,008 ⁱ	0,0017 ^{j k}	0,046	1,72	42,1	- 48	0	2	2
Zyklische organische					3								

Natürliches Kältemittel H₂O

Wasser R 718 (H_2O)

Absorptionsflüssigkeitskühler

Heisswasser einstufig

Heisswasser einstufig, Doppel Effekt

Heisswasser zweistufig

ND-Dampf bis 1,5 bar

HD-Dampf bis 8 bar

Erdgas-Befeuert

Öl-Befeuert

GWP < 1

ODP = 0

Sicherheitsgruppe A1

Förderung bis 600 kW Kälteleistung

Carrier

Single Effect Double Lift

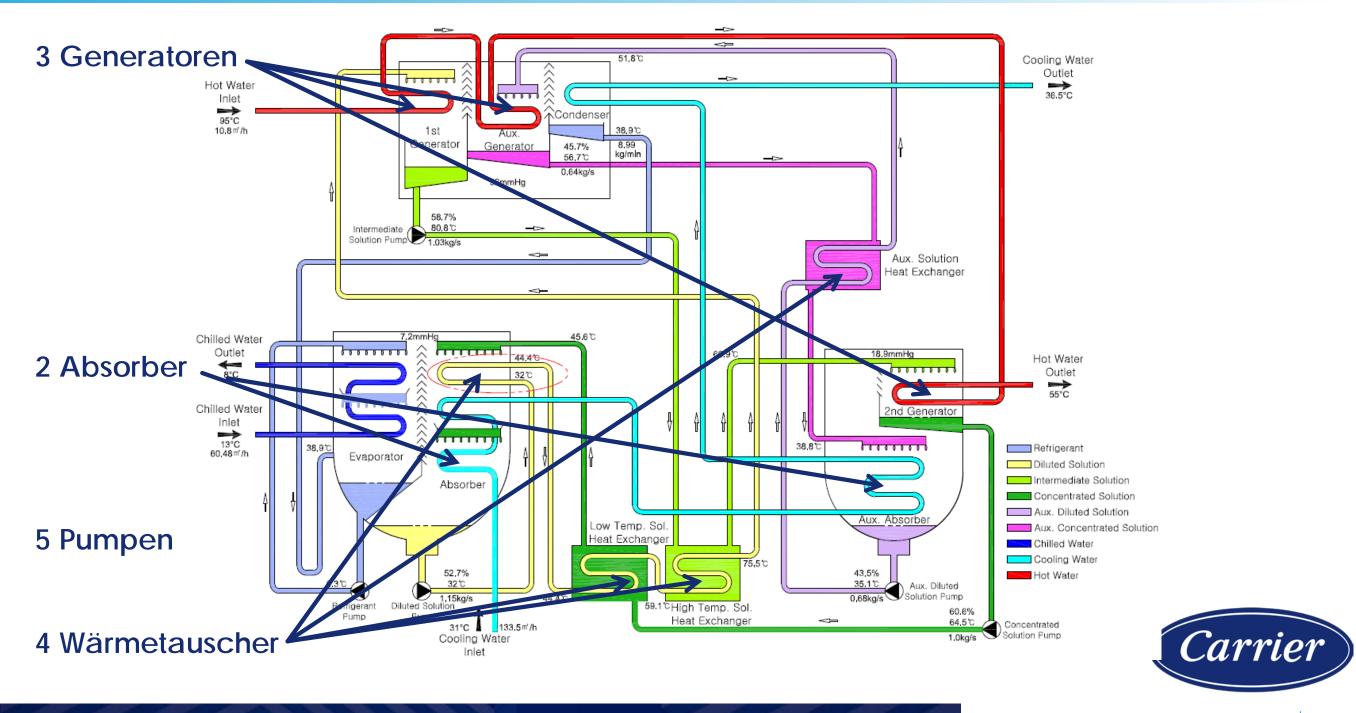
16JLA

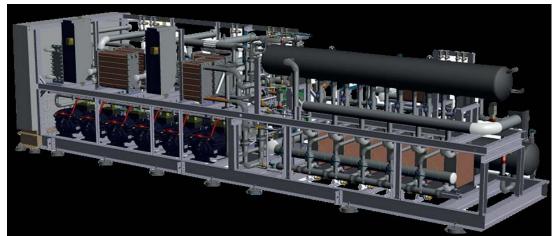
Kaltwasser 11...5 °C Kühlwasser 40....45 °C EG 34% Trockenes RKW Warmwasser 85....65 °C COP 0,38

16JLB

sehr hohe Warmwasserspreizung
Kaltwasser 11...5 °C
Kühlwasser 27...37 °C EG 34%, Verdunstungskühlung!
Warmwasser 125....55 °C bzw. 80....55 °C
Max. 135 °C, Min. 50 °C; MAX. ca. 70 K
COP 0,65

16LJD


Kaltwasser 6...1 °C Kühlwasser 27...37 °C EG 34%, Verdunstungskühlung! Warmwasser 90....65 °C COP 0,41

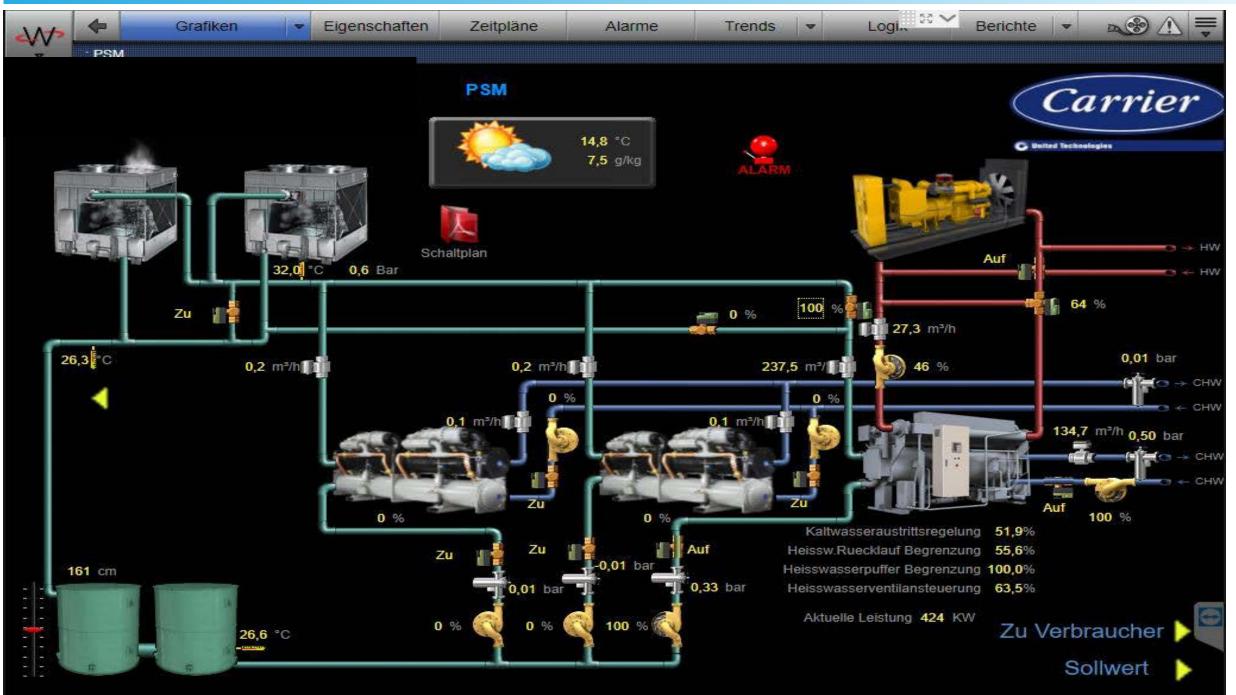


16JLB Single Effect Double Lift

Natürliches Kältemittel CO₂ bis 1,2 MW

Kohlendioxid R 744 (CO₂)

Sinnvoll für Tiefkühlung, Eisbahnen und Hochtemperatur-Wärmepumpe bis 110 °C Wasser


Hohe Drücke über 125 bar Hohe Temperaturen bis 120 °C CO₂

GWP = 1 ODP = 0 Sicherheitsgruppe A1 nicht giftig klassifiziert, aber verdrängt Sauerstoff (Gaswarnanlage)

Förderung möglich

(BHKW) AKM-SKM-KT-WA + Controls aus einer Hand

